composition was introduced in *REMOS*92 (Yamamoto, 1992*b*) in order to obtain a reasonable chemical composition. The partial occupancy of each site was also restrained to within a physically reasonable range by the penalty function. The point density and composition obtained from the refinement were 0.0674 Å⁻³ and Al₇₇Cr₁₈Ni₅ (Al_{14.6}Cr_{3.6}Ni_{0.9}), respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993). Cell refinement: CAD-4 EXPRESS. Data reduction: ABSORP (Yamamoto, 1992a). Program(s) used to solve structure: direct methods (SIR92; Altomare et al., 1994). Program(s) used to refine structure: modified version of REMOS92. Molecular graphics: PRJAP (Yamamoto, 1992c).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1150). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Blessing, R. H., Coppens, P. & Becker, P. (1974). J. Appl. Cryst. 7, 488-492.
- Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Yamamoto, A. (1992a). ABSORP. Program for Data Reduction. NIRIM, Japan.
- Yamamoto, A. (1992b). *REMOS*92. *Program for Structure Refinement*. NIRIM, Japan.
- Yamamoto, A. (1992c). PRJAP. Crystal Structure Graphics Program. NIRIM, Japan.
- Zhou, W. L., Li, X. Z. & Kuo, K. H. (1989). Scr. Metall. 23, 1571– 1574.

Acta Cryst. (1997). C53, 1533-1536

$Ca_3Y_2(Si_3O_9)_2$

Hisanori Yamane,^a Toru Nagasawa,^a Masahiko Shimada^a and Tadashi Endo^b

^aInstitute for Advanced Materials Processing, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-77, Japan, and ^bDepartment of Materials Chemistry, Graduate School of Engineering, Tohoku University, Aramaki, Aoba-ku, Sendai 980-77, Japan. E-mail: yamane@ibis.iamp.tohoku.ac.jp

(Received 17 January 1997; accepted 13 May 1997)

Abstract

This new cyclosilicate, calcium yttrium cyclosilicate, crystallizes in space group C2/c. Ca and Y atoms are in eight-, seven- and sixfold coordination sites between the layers of ternary SiO₄ rings (Si₃O₉). The structural formula can be expressed as $(Ca_{0.89}Y_{0.11})_2(Ca_{0.54}Y_{0.46})_2$ - $(Ca_{0.14}Y_{0.86})(Si_3O_9)_2$.

Comment

Rings of three SiO₄ tetrahedra joined by sharing corners occur in a few rare silicates, such as BaTiSi₃O₀, benitoite and $K_2ZrSi_3O_9$. Wadeite, α -CaSiO₃ (pseudowollastonite, a high-temperature polymorph of CaSiO₃. stable above 1393 K), is another example of the threemembered ring silicates. The low-temperature polymorph of CaSiO₃ (wollastonite) consists of infinite SiO₃ chains. As noted by Hilmer (1963), it is difficult to prepare single crystals of pseudowollastonite large enough for X-ray diffraction analysis. Hilmer studied the crystal structure of SrGeO₃ instead, which allowed him to infer the structure of α -CaSiO₃. O'Keeffe & Hyde (1981) explained the rarity of SiO_4 'three-rings' (Si_3O_9) in silicate structures and the anomalously long strained Si-O bonds observed in the three-rings by using the ratio of a non-bonded radius, 2R(Si), and a standard Si-O bond length, l(Si-O). Three-rings are more common in germanates, as expected from a smaller R(Ge)/l(Ge-O) value. The crystal structure and polytypes of α -CaSiO₃ were later studied by Yamanaka & Mori (1981), who succeeded in preparing single crystals of pseudowollastonite using a CaCl₂ flux.

In the CaO-SiO₂-Y₂O₃ system, we found a new compound, Ca₃Y₂(Si₃O₉)₂, which contains Si₃O₉ rings. The compounds previously known in this system are Ca₂Y₈(SiO₄)₆O₂ (Ito, 1968; Wanmaker, Vrugt & Verlijsdonk, 1971), $Ca_3Y_6(SiO_4)_6$, $Ca_4Y_6(SiO_4)_6O$ (Wanmaker, Vrugt & Verlijsdonk, 1971) and Ca₂Y₂Si₂O₉ (Warshaw & Roy, 1962). Ca₂Y₈Si₆O₂₆, Ca₃Y₆Si₆O₂₄ and $Ca_4 Y_6 (SiO_4)_6 O$ have apatite-type structures. Recently, we found Ca₃Y₂(SiO₄)₃ with a silicocarnotitetype structure (Yamane, Nagasawa, Shimada & Endo, 1997). In these four structures, SiO₄ tetrahedra are isolated and linked by Ca and Y atoms. Ca₂Y₂Si₂O₉ probably has a cuspidine-type structure in which two SiO_4 tetrahedra share one corner and make an Si₂O₇ complex. The present paper reports the crystal structure of the new calcium yttrium cyclosilicate $Ca_3Y_2(Si_3O_9)_2$.

Fig. 1 shows the crystal structure of the title compound. Two O atoms of every SiO₄ tetrahedron being shared with other SiO_4 tetrahedra results in a ternary Si₃O₉ ring (Fig. 2). Ca and Y atoms connect the Si_3O_9 rings. The structure of $Ca_3Y_2(Si_3O_9)_2$ can be described as Ca/Y atom layers and Si₃O₉ ring layers stacking along the $[10\overline{1}]$ direction (Fig. 3). Fig. 4 shows the O-atom polyhedra of a Ca/Y atom layer and the locations of the Si₃O₉ rings on the layer. There are three atom sites and one vacant site in the Ca/Y layer (Ca1/Y1:Ca2/Y2:Ca3/Y3:vacant = 2:2:1:1). The crystal structure of $Ca_3Y_2(Si_3O_9)_2$, represented as $(Ca_3^{2+}Y_2^{3+})_{5/6}(vacant)_{1/6}SiO_3$, can be related to the structure of α -CaSiO₃, which is characterized by Ca atom layers with no vacancies and Si₃O₉ ring layers. Yamanaka & Mori (1981) found four-layer, six-layer and disordered-stacking-layer polytypes of α -CaSiO₃. The

Fig. 2. The Si₃O₉ ring in Ca₃Y₂(Si₃O₉)₂. Displacement ellipsoids are drawn at the 99% probability level.

four-layer polytype is dominant among these polytypes. The position of the Si₃O₉ rings shifts in the sequence ABCD. Ca₃Y₂(Si₃O₉)₂ has a different four-layer stacking sequence. Two Si₃O₉ rings face each other across a vacant site of the Ca/Y atom layer and the position of the Si₃O₉ rings shifts in the sequence AA'BB', as shown

in Fig. 3. The interatomic distances between Si atoms and Si—O—Si bridging O atoms are in the range 1.644– 1.657 Å (average 1.650 Å). These values are larger than the standard Si—O bond length of 1.60 Å, but comparable with the values reported for BaTiSi₃O₉ (1.630–1.648 Å, average 1.639 Å; Fischer, 1969) and for α -CaSiO₃ (1.658–1.671 Å, average 1.664 Å; Yamanaka & Mori, 1981). The Si…Si distances [2R(Si)]

Fig. 3. A perspective view of $Ca_3Y_2(Si_3O_9)_2$ along the *b* axis.

Fig. 4. The Ca/Y-centred O-atom polyhedron layer and the arrangement of the Si₃O₉ rings.

of the Si_3O_9 ring in $Ca_3Y_2(Si_3O_9)_2$ are 3.0311(13) $(Si1 \cdot \cdot \cdot Si2)$, 3.0345 (13) $(Si2 \cdot \cdot \cdot Si3)$ and 3.0392 (13) $(Si3 \cdot \cdot Si1)$ Å (average 3.035 Å), which are consistent with the non-bonding distance 2R = 3.06 Å for regular SiO₄ tetrahedra. All unshared O atoms of the Si_3O_9 ring in α -CaSiO₃ are coordinated by one Si and three Ca atoms (fourfold coordination). The average of the Si-O lengths is 1.587 Å. In the structure of $Ca_3Y_2(Si_3O_9)_2$, O3, O4 and O8 atoms on one side of the Si_3O_9 ring are surrounded by one Si and three Ca/Y atoms (total fourfold coordination). The average of the Si-O distances (1.607 Å) is almost equal to a standard bond length, l(Si-O) = 1.60 Å. The O atoms on the other side, O1, O6 and O9, are coordinated by one Si and two Ca/Y atoms (total threefold coordination) and the average Si-O distance is 1.583 Å. This side faces the vacant site of the Ca/Y layer.

Ca and Y atoms are coordinated by eight O atoms at the Ca1/Y1 site. The Ca/Y-O interatomic distances are in the range 2.301-2.619 Å (average 2.520 Å). These values are close to the Ca-O interatomic distances observed in α -CaSiO₃ (average 2.536 Å) where all Ca atoms have eightfold coordination. As shown in Fig. 5, six O atoms are edges of two Si_3O_9 rings and the remaining two are apices of the other two Si₃O₉ rings. The Ca2/Y2 site has sevenfold coordination with a Ca/Y-O distances in the range 2.275-2.588 Å (average 2.419 Å). Three O atoms comprise two edges of an Si₃O₉ ring. The remaining four O atoms are apices of Si₃O₉ rings. Ca and Y atoms in the Ca3/Y3 site are octahedrally coordinated by apex O atoms from six Si₃O₉ rings. The Ca/Y-O distances range from 2.228 to 2.352 Å (average 2.288 Å).

Fig. 5. The arrangement of the Ca/Y-centred O-atom polyhedra and Si₃O₉ rings.

Bond-valence sums for Ca1/Y1, Ca2/Y2 and Ca3/Y3 sites, calculated using the bond-valence parameter for Y—O $R_{YO} = 2.014 \text{ Å}$ (Brese & O'Keeffe, 1991), are 2.160, 2.494 and 2.885, respectively. These values agree well with the average valences obtained from the occupancies of Ca and Y atoms in these sites (2.11, 2.46 and 2.86, respectively).

Experimental

Starting materials were powders of Y2O3 (99.9% purity, Nippon Yttrium Company), CaCO₃ (99.99% purity, Rare Metallic Co., Ltd) and SiO₂ (extra pure grade, Wako Pure Chemical Ind., Ltd). These powders were weighed and mixed in an appropriate amount of ethanol with an agate mortar. The mixture was pressed into a pellet and placed on a platinum plate. Polycrystalline Ca₃Y₂(Si₃O₉)₂ was prepared at 1673 K for 8 d from pellets with stoichiometric composition (Ca:Y:Si = 3:2:6 molar ratio). The refined lattice parameters obtained by X-ray powder diffraction at 293 K using Cu $K\alpha$ radiation are: monoclinic, a = 13.335 (7), b = 7.7261 (4), c = 14.7844 (8) Å, $\beta = 90.285 (3)^{\circ}$. The single crystals were grown in the melt of a starting mixture with a composition of Ca:Y:Si = 1:1:3by slow cooling from 1773 to 1673 K, with a cooling rate of 6.0 K h⁻¹. A colourless transparent single crystal was selected from the fragments of the crushed product and ground into a sphere for data collection.

Crystal data

$Ca_3Y_2(Si_3O_9)_2$	Mo $K\alpha$ radiation
$M_r = 754.60$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
C2/c	reflections
a = 13.320(3) Å	$\theta = 28.98 - 29.92^{\circ}$
b = 7.729 (2) Å	$\mu = 9.176 \text{ mm}^{-1}$
c = 14.785(2) Å	T = 298 (2) K
$\beta = 90.256(14)^{\circ}$	Sphere
V = 1522.0(5)Å ³	0.076 mm (radius)
Z = 4	Transparent
$D_x = 3.293 \text{ Mg m}^{-3}$	
$D_m = 3.28 (1) \text{ Mg m}^{-3}$	
D_m measured by pycnometry	

 $R_{\rm int} = 0.018$

 $\theta_{\rm max} = 25.01^{\circ}$

 $h = -15 \rightarrow 1$

 $l = -17 \rightarrow 17$

3 standard reflections

every 150 reflections

intensity decay: none

 $k = -9 \rightarrow 1$

Data collection

Rigaku AFC-7R diffractometer $\omega/2\theta$ scans Absorption correction: spherical $T_{\rm min} = 0.365, T_{\rm max} = 0.376$ 1781 measured reflections 1340 independent reflections 1068 reflections with $I > 2\sigma(I)$

Refinement

C

Y

C

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.021$	$\Delta \rho_{\rm max} = 0.328 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.063$	$\Delta ho_{ m min}$ = -0.735 e Å ⁻³
S = 1.063	Extinction correction: none
1340 reflections	Scattering factors from
138 parameters	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.0369P)^2]$	Crystallography (Vol. C)
+ 2.2321 <i>P</i>]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	У	z	U_{eq}
11†	0.16155 (4)	0.11853 (7)	0.41270 (3)	0.0093 (2)
1‡	0.16155 (4)	0.11853 (7)	0.41270(3)	0.0093 (2)
12§	0.33485(3)	0.12649 (5)	0.08416(2)	0.0075 (2)

Y2¶	0.33485 (3)	0.12649 (5)	0.08416(2)	0.0075(2)
Ca3††	0	0.37890 (6)	1/4	0.0065(2)
Y3‡‡	0	0.37890 (6)	1/4	0.0065(2)
Sil	0.09475 (6)	0.07335 (11)	0.09901 (5)	0.0056(2)
Si2	0.27403 (6)	0.37315 (11)	0.26967 (5)	0.0054 (2)
Si3	0.40206 (6)	0.18031 (11)	0.40679 (5)	0.0061(2)
O1	0.0014 (2)	0.1754 (3)	0.13787 (14)	0.0114 (5)
O2	0.0630(2)	0.1227 (3)	0.56374 (13)	0.0109(4)
O3	0.1584 (2)	0.3787 (3)	0.29922 (14)	0.0132 (5)
O4	0.1588 (2)	0.1532 (3)	0.01777 (15)	0.0162 (5)
05	0.1794 (2)	0.0447 (3)	0.17946 (14)	0.0114 (5)
06	0.3048 (2)	0.3694 (3)	0.16674 (13)	0.0120(5)
07	0.3202 (2)	0.2041 (3)	0.32360 (13)	0.0105 (5)
08	0.3352 (2)	0.1108 (3)	0.49013 (14)	0.0116(5)
09	0.5035 (2)	0.0737 (3)	0.12785 (14)	0.0133 (5)

 \dagger Site occupancy = 0.888 (3). \ddagger Site occupancy = 0.111 (2). \S Site occupancy = 0.538 (3). \P Site occupancy = 0.461 (2). \dagger Site occupancy = 0.145 (4). \ddagger Site occupancy = 0.855 (4).

Table 2. Selected geometric parameters (Å)

Ca1/Y1-O6 ⁱ	2.301 (2)	Ca3/Y3—O3	2.228 (2)
Cal/Y1—O1 ⁱⁱ	2.335 (2)	Ca3/Y3-01	2.285 (2)
Ca1/Y1O8 ⁱⁿⁱ	2.538 (2)	Ca3/Y3-01"	2.285 (2)
Ca1/Y1-08	2.577 (2)	Ca3/Y3—O9'"	2.352 (2)
Cal/Y1-07	2.582 (2)	Ca3/Y3-09 ^{viii}	2.352(2)
Cal/Y1—O2	2.595 (2)	Sil—Ol	1.582 (2)
Cal/Y1-O4 ^{iv}	2.613 (2)	Si1—O4	1.600(2)
Cal/Y1-O3	2.619 (2)	Si105	1.650(2)
Ca2/Y2—O4 ^v	2.275 (2)	Sil—O2 ^{vi}	1.657 (2)
Ca2/Y206	2.276 (2)	Si206	1.578 (2)
Ca2/Y2-O8vi	2.301 (2)	Si2—O3	1.604 (2)
Ca2/Y2—O9	2.370(2)	Si2—O5 ^{vii}	1.644 (2)
Ca2/Y204	2.547 (2)	Si207	1.648(2)
Ca2/Y2O3'	2.578 (2)	Si3—O9 ^{ix}	1.590(2)
Ca2/Y205	2.588 (2)	Si308	1.616(2)
Ca3/Y3-O3 ⁱⁱ	2.228 (2)		

Symmetry codes: (i) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (ii) $-x, y, \frac{1}{2} - z$; (iii) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (iv) $x, -y, \frac{1}{2} + z$; (v) $\frac{1}{2} - x, \frac{1}{2} - y, -z$; (vi) $x, -y, z - \frac{1}{2}$; (vii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (viii) $x - \frac{1}{2}, \frac{1}{2} + y, z$; (ix) $1 - x, y, \frac{1}{2} - z$.

Data collection: CONTROL (Rigaku Corporation, 1992). Cell refinement: CONTROL. Data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ATOMS2.0 (Dowty, 1991). Software used to prepare material for publication: SHELXL93.

This work was partly supported by NEDO under the Synergy Ceramics Project of the Industrial Science and Technology Frontier Program promoted by AIST, MITI, Japan. MS is a member of the Joint Research Consortium of Synergy Ceramics. We would like to thank Kyota Ueda for help with X-ray diffraction data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1157). Services for accessing these data are described at the back of the journal.

References

- Dowty, E. (1991). ATOMS2.0. A Computer Program for Displaying Atomic Structures. IBM Version 2.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Fischer, K. (1969). Z. Kristallogr. 129, 222-243.
- Hilmer, W. (1963). Sov. Phys. Crystallogr. 7, 537-576.
- Ito, J. (1968). Am. Mineral. 53, 890-907.
- Molecular Structure Corporation (1992). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
- O'Keeffe, M. & Hyde, B. G. (1981). Structure and Bonding in Crystals, Vol. 1, edited by M. O'Keeffe & A. Navrotsky, pp. 227– 254. New York: Academic Press.
- Rigaku Corporation (1992). CONTROL. Program set V. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Wanmaker, W. L., Vrugt, J. W. & Verlijsdonk, J. G. (1971). Philips Res. Rep. 26, 373-381.
- Warshaw, I. & Roy, R. (1962). Inorg. Chem. 1, 719-720.
- Yamanaka, T. & Mori, H. (1981). Acta Cryst. B37, 1010-1017.
- Yamane, H., Nagasawa, T., Shimada, M. & Endo, T. (1997). Acta Cryst. C53, 1367-1369.

Acta Cryst. (1997). C53, 1536-1538

Zirconium–Nickel, Zr₇Ni₁₀: Space Group Revision for the Stoichiometric Phase

JEAN-MARC JOUBERT,^{*a*} \uparrow **R**. ČERNÝ,^{*a*} K. YVON,^{*a*} M. LATROCHE^{*b*} AND A. PERCHERON-GUÉGAN^{*b*}

^aLaboratoire de Cristallographie, Université de Genève, 24 Quai E. Ansermet, CH-1211 Genève 4, Switzerland, and ^bLCMTR, CNRS, 1 Place A. Briand, F-92195 Meudon CEDEX, France. E-mail: joubert@cnrs-bellevue.fr

(Received 21 February 1997; accepted 13 May 1997)

Abstract

The intermetallic compound Zr_7Ni_{10} is a structuretype representative which was previously reported to crystallize in the non-centrosymmetric space group *Aba2*. In the present work we show that the correct space group is centrosymmetric *Cmca*.

Comment

On the basis of metallographic data, Kirkpatrick & Larsen (1961) assigned the intermetallic phase Zr_7Ni_{10} a homogeneity range extending from 56.3 to 58.9 at.% Ni. In a separate investigation, Kirkpatrick, Smith & Larsen (1962) investigated its crystal structure as a function of composition and found that the nickel-

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla,
 M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.
 Brese, N. E. & O'Keeffe, M. (1991). *Acta Cryst.* B47, 192–197.

[†] Current address: LCMTR, CNRS, 1 Place A. Briand, F-92195 Meudon CEDEX, France.